Fabrication, characterization, and thermal property evaluation of silver nanofluids
نویسندگان
چکیده
Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy. It was found that for the both solvents, the effect of microwave irradiation was mainly on the particles distribution, rather than the size, which enabled to make stable and homogeneous silver nanofluids. The individual spherical nanostructure of self-assembled nanoparticles has been formed during microwave irradiation. Ethylene glycol solution, due to its special properties, such as high dielectric loss, high molecular weight, and high boiling point, can serve as a good solvent for microwave heating and is found to be a more suitable medium than the distilled water. A photopyroelectric technique was carried out to measure thermal diffusivity of the samples. The precision and accuracy of this technique was established by comparing the measured thermal diffusivity of the distilled water and ethylene glycol with values reported in the literature. The thermal diffusivity ratio of the silver nanofluids increased up to 1.15 and 1.25 for distilled water and ethylene glycol, respectively.
منابع مشابه
Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites
Articles you may be interested in Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels J. Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets Appl. High thermal conductivity epoxy-sil...
متن کاملPhysico-Acoustic Study on Thermal Conductivity of Silver Nanofluid
Low transmission of heat is one of the major problems for heat exchanger fluids in many industrial and scientific applications. This includes cooling of the engines, high power transformers to heat exchangers in solar hot water panels or in refrigeration systems. In order to tackle these problems in thermal industries, nanofluids could play a significant role as excellent heat exchanger materia...
متن کاملUltrasonic-aided fabrication of gold nanofluids
A novel ultrasonic-aided one-step method for the fabrication of gold nanofluids is proposed in this study. Both spherical- and plate-shaped gold nanoparticles (GNPs) in the size range of 10-300 nm are synthesized. Subsequent purification produces well-controlled nanofluids with known solid and liquid contents. The morphology and properties of the nanoparticle and nanofluids are characterized by...
متن کاملComparing thermal enhancement of Ag-water and SiO2-water nanofluids over an isothermal stretching sheet with suction or injection
In the present paper, the flow and heat transfer of two types of nanofluids, namely, silver-water and silicon dioxide-water, were theoretically analyzed over an isothermal continues stretching sheet. To this purpose, the governing partial differential equations were converted to a set of nonlinear differential equations using similarity transforms and were then analytically solved. It was found...
متن کاملThe Study of Thermal Conductivity Silver/Water Nanofluid
In present study, the thermal conductivity of silver/water nanofluid was investigated experimentally. Four different volume concentrations of nanofluids (2, 3, 5 and 10%) were prepared by dispersing silver nanoparticles in water. The properties of nanofluids were measured by varying the temperature from 20ºC to 100ºC and also, different sizes of nanoparticles dispersed in water (20-30, 50-60 an...
متن کامل